本篇博客还在持续修改润色中~
敬请期待~
AtCoder题解|ABC 102C Linear Approximation
题目信息 📚
【题目描述】
Snuke has an integer sequence $A$ of length $N$.
He will freely choose an integer $b$. Here, he will get sad if $A_i$ and $b+i$ are far from each other. More specifically, the sadness of Snuke is calculated as follows:
- $\text{abs}(A_1 - (b+1)) + \text{abs}(A_2 - (b+2)) + \ldots + \text{abs}(A_N - (b+N))$
Here, $\text{abs}(x)$ is a function that returns the absolute value of $x$.
Find the minimum possible sadness of Snuke.
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq A_i \leq 10^9$
- All values in input are integers.
If we choose $b=0$, the sadness of Snuke would be $\text{abs}(2-(0+1)) + \text{abs}(2-(0+2)) + \text{abs}(3-(0+3)) + \text{abs}(5-(0+4)) + \text{abs}(5-(0+5)) = 2$. Any choice of $b$ does not make the sadness of Snuke less than $2$, so the answer is $2$.
【输入】
The input is given from Standard Input in the following format:
$N$
$A_{1}$ $A_{2}$ … $A_{N}$
【输出】
Print the minimum possible sadness of Snuke.
【数据范围】
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq A_i \leq 10^9$
- All values in input are integers.
【输入样例1】
5
2 2 3 5 5
【输出样例1】
2
If we choose $b=0$, the sadness of Snuke would be $\text{abs}(2-(0+1)) + \text{abs}(2-(0+2)) + \text{abs}(3-(0+3)) + \text{abs}(5-(0+4)) + \text{abs}(5-(0+5)) = 2$. Any choice of $b$ does not make the sadness of Snuke less than $2$, so the answer is $2$.
【输入样例2】
9
1 2 3 4 5 6 7 8 9
【输出样例2】
0
【输入样例3】
6
6 5 4 3 2 1
【输出样例3】
18
【输入样例4】
7
1 1 1 1 2 3 4
【输出样例4】
6
【题目来源】
https://atcoder.jp/contests/abc102/tasks/arc100_a
题目解析 🍉
【题目分析】
【C++代码】