加载中...

Pytorch


数据集处理

基础操作

TensorDatasetDataLoader

import torch
import torch.utils.data

# 创建一个tensor输入
inputs = torch.tensor([[1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0], [5.0, 6.0], 
                       [6.0, 7.0], [7.0, 8.0], [8.0, 9.0], [9.0, 10.0], [10.0, 11.0]])

# 创建一个tensor标签
labels = torch.tensor([0, 1, 0, 1, 0, 1, 0, 1, 0, 1])

# 创建TensorDataset对象
dataset = torch.utils.data.TensorDataset(inputs, labels) # 利用torch.utils.data.TensorDataset()
print(dataset)
print(type(dataset))
for data, i in dataset: 
    print(data, i)
print()

# 创建Dataloader对象
dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True) # 利用torch.utils.
print(dataloader)
print(type(dataloader))
for batch_data, batch_label in dataloader:
    print(batch_data, batch_label)

输出

<torch.utils.data.dataset.TensorDataset object at 0x7ff28b5da220>
<class 'torch.utils.data.dataset.TensorDataset'>
tensor([1., 2.]) tensor(0)
tensor([2., 3.]) tensor(1)
tensor([3., 4.]) tensor(0)
tensor([4., 5.]) tensor(1)
tensor([5., 6.]) tensor(0)
tensor([6., 7.]) tensor(1)
tensor([7., 8.]) tensor(0)
tensor([8., 9.]) tensor(1)
tensor([ 9., 10.]) tensor(0)
tensor([10., 11.]) tensor(1)

<torch.utils.data.dataloader.DataLoader object at 0x7ff28b5dabb0>
<class 'torch.utils.data.dataloader.DataLoader'>
tensor([[4., 5.],
        [6., 7.]]) tensor([1, 1])
tensor([[5., 6.],
        [2., 3.]]) tensor([0, 1])
tensor([[ 7.,  8.],
        [10., 11.]]) tensor([0, 1])
tensor([[1., 2.],
        [8., 9.]]) tensor([0, 1])
tensor([[ 9., 10.],
        [ 3.,  4.]]) tensor([0, 0])

经典数据集导入

MNIST

CNN

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

CSDN

神经网络搭建

LeNet-5

内容 链接 创作者
Python Class Tutorial 链接🔗 Corey Schafer

CIFAR-10分类

import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optiM
import torch.nn.functional as F

# 数据预处理
transform = transforms.Compose([
    transforms.RandomHorizontalFlip(),
    transforms.RandomCrop(32, 4),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 加载训练集,并且应用预处理操作
trainset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2)

# 加载测试集,并且应用预处理操作
testset = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True, num_workers=2)


# 定义卷积神经网络
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
        self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
        self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(128 * 4 * 4, 256)
        self.fc2 = nn.Linear(256, 128)
        self.fc3 = nn.Linear(128, 10)
        self.dropout = nn.Dropout(0.5)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = self.pool(F.relu(self.conv3(x)))
        x = x.view(-1, 128 * 4 * 4)
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


# 创建模型实例
model = SimpleCNN()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器,学习率为0.001

# 4. 训练模型
# for epoch in range(10):  # 训练10个epoch
#     running_loss = 0.0
#     for i, data in enumerate(trainloader, 0):
#         inputs, labels = data
#         optimizer.zero_grad()  # 清除梯度
#
#         outputs = model(inputs)  # 前向传播
#         loss = criterion(outputs, labels)  # 计算损失
#         loss.backward()  # 反向传播
#         optimizer.step()  # 优化
#
#         running_loss += loss.item()
#         if i % 100 == 99:  # 每100个批次打印一次
#             print(f"[{epoch + 1}, {i + 1}] loss: {running_loss / 100:.3f}")
#             running_loss = 0.0
#
# print("Finished Training")

# 5. 测试模型
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = model(images)
        _, predicted = torch.max(outputs, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy of the network on the 10000 test images: {100 * correct / total:.2f}%')

# 6. 保存模型
torch.save(model.state_dict(), 'simple_cnn.pth')

文章作者: Rickyの水果摊
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Rickyの水果摊 !
 本篇
Pytorch Pytorch
2024-09-12 Rickyの水果摊
本篇 
Pytorch Pytorch
2024-09-12 Rickyの水果摊
  目录